

Safety issues

Teachers and students should carry out their own risk assessments for the planned investigations, in line with their department policy	
KS3 Science Programme of Study	KS4 GCSE Science Programme of Study
(DfE National Curriculum PoS)	(DfE National Curriculum PoS)
Scientific attitudes	Development of Scientific thinking
• pay attention to objectivity and concern for	• the ways in which methods and theories develop
accuracy, precision, repeatability and reproducibility	over time
understand that scientific methods and theories	• using a variety of concepts and models to develop
develop as earlier explanations are modified to	scientific explanations and understanding
take account of new evidence and ideas, together	appreciating the power and limitations of science
with the importance of publishing results and peer	and considering ethical issues which may arise
review	• explaining every day and technological applications
evaluate risks	of science; evaluating associated personal, social,
Experimental skills and investigations	economic and environmental implications; and
• ask questions and develop a line of enquiry based	making decisions based on the evaluation of
on observations of the real world, alongside prior	evidence and arguments
knowledge and experience	• evaluating risks both in practical science and the
• make predictions using scientific knowledge and	wider societal context, including perception of risk
understanding	recognising the importance of peer review of
• select, plan and carry out the most appropriate	results and of communication of results to a wide
types of scientific enquiries to test predictions,	range of audiences
including identifying independent and control	Experimental skills and strategies
variables	• use scientific theories and explanations to develop
use appropriate techniques, apparatus and materials	hypotheses
during fieldwork and laboratory work, paying	plan experiments to make observations, test hypotheses or explore phenomena
 attention to health and safety make and record observations and measurements 	 hypotheses or explore phenomena apply knowledge of a range of techniques, apparatus
using a range of methods for different investigations;	and materials to select those appropriate to the
and evaluate the reliability of methods and suggest	experiment
possible improvements	 carry out experiments appropriately, having due
 apply sampling techniques 	regard to the correct manipulation of apparatus, the
Analysis and evaluation	accuracy of measurements and health and safety
apply mathematical concepts and calculate results	considerations
• present observations and data using appropriate	• recognise when to apply a knowledge of sampling
methods, including tables and graphs	techniques to ensure any samples collected are
• interpret observations and data, including identifying	representative of the whole population
patterns and using observations, measurements and	• make and record observations and measurements
data to draw conclusions	using a range of apparatus and methods
• present reasoned explanations, including explaining	evaluate methods and suggest possible
data in relation to predictions and hypotheses	improvements and further
evaluate data, showing awareness of potential	Analysis and evaluation
sources of random and systematic error	apply the cycle of collecting, presenting and
• identify further questions arrising from their results	analysing data including;
Measurement	• present observations and data using appropriate
understand and use SI units	methods
• use and derive simple equations and carry out	• translating data from one form to another
appropriate calculations	carrying out and representing mathematical and
undertake basic data analysis including simple	statistical analysis
statistical techniques	

Your Scientific Health Investigation Curriculum Links

KS4 GCSE Science Programme of Study (DfE National Curriculum PoS) continued.....

- representing distributions of results and estimations of uncertainty
- interpret observations and data including identifying patterns and trends, make inferences and draw conclusions
- present reasoned explanations including relating data to hypotheses
- being objective, evaluating data in terms of accuracy, precision, repeatability and reproducibility and identifying potential sources of random and systematic error
- communicating the scientific rationale for investigations, including the methods used, the findings and reasoned conclusions, using paper-based and electronic reports and presentations

Vocabulary, units, symbols and nomenclature

- · developing their use of scientific vocabulary and nomenclature
- recognising the importance of scientific quantities and understanding how they are determined
- use SI units
- use prefixes and powers of ten for orders of magnitude (e.g. kilo, centi, milli, micro, nano)
- interconverting units
- using appropriate number of significant figures in calculations

KS3 Biology subject content (DfE National Curriculum PoS)	KS4 Biology subject content (DfE National Curriculum PoS)
Nutrition and digestion	Health, disease and the development of
• the consequences of imbalance in the diet, including	medicines
obesity, stravation and deficiency diseases	 the relationship between health and disease
Gas exchange systems	non-communicable diseases
• the impact of exercise, asthma and smoking on the	 the impact of lifestyle on the incidence of non-
human gas exchange system	communicable diseases
PSHF	

PSHE

DfE National Curriculum PoS)

Physical health and fitness

- the risks associated with an inactive lifestyle (including obesity)
- the positive associations between physical activity and promotion of mental wellbeing, including as an approach to combat stress
- the characteristics and evidence of what constitutes a healthy lifestyle, maintaining a healthy weight, including the links between an inactive lifestyle and ill-health, including cancer and cardio-vascular ill-health

Behaviour Change Theory links

- BCT I.I Goal setting (behaviour)
- BCT I.2 Problem solving
- BCT I.3 Goal setting (outcome)
- BCT I.4 Action planning
- BCT 1.5 Review behaviour golas
- BCT 1.6 Discrepancy between current behaviour and goals
- BCT I.7 Review outcome goals
- BCT I.8 Behavioural contract
- BCT I.9 Commitment
- BCT 2.3 Self-monitoring of behaviour
- BCT 2.4 Self-monitoring of outcomes of behaviour
- BCT 2.7 Feedback on outcomes of behaviour
- BCT 3.1 Social support (unspecified)
- BCT 3.2 Social support (practical)
- BCT 3.3 Social support (emotional)
- BCT 11.2 Reduce negative emotions
- BCT 13.1 Identification of self as role model

Planning Your Scientific Health Investigation

Objectives

At the end of this activity students should be able to:

- Formulate their own question to investigate health
- Design and construct a plan for their own scientific health investigation
- Safely carry out their scientific health investigation
- Record reliable, precise and accurate data
- Make a conclusion based on the evidence collected

Hook

Examples of questions previously investigated on lesson PowerPoint.

Activities:

Introduce the activity and share the objectives with the students. Individuals record how confident they are for each of the objectives at the start of the activity.

Starter

Activity I:What question on health are you going to investigate?

Discuss with students and remind them how the scientists approached their studies in the Southampton Women's Survey and the TeC-19 Study .Then pose the question **'How could you investigate your health?'** Be as open as possible and try to encourage them to be imaginative.

- In small groups revisit the question they have decided to investigate on health, checking they have decided how they will make their measurements and what resources they will need. LifeLab is happy to support with resources if possible and given enough planning time.
- Feedback to the whole class from each group, sharing ideas for their investigation. Students should be free to decide their own question. Ideally, each group will answer a different question.
- Class discussion sharing any problems/questions they may have come across and how they have solved them.
- Students discuss how scientists carry out investigations; aim/hypothesis, collecting reliable / accurate / precise data, controlling variables etc. Another chance to re-enforce these keywords in a context in which they have some personal investment. Encourage students to use different types of data for their investigations (i.e. they could data on opinions, habits from peers) not just 'quantitative' data.

Introduce the CREST Bronze Award. Stress that this isn't extra work, it is included in the work they do as part of their investigation.

Planning Your Scientific Health Investigation

Main Activity 2: Planning our own scientific health investigation Time: variable, teacher's discretion Students plan their own investigation and carry out their investigation, collecting and recording data. Analyse and draw conclusions based on the evidence collected from their investigations.

N.B. if students wanted to do a sport/exercise related investigation this could be done in conjunction with, or as part of, a PE lesson.

Plenary

Students evaluate their findings.

'Do they trust their data? What would they go on to do now? Would they repeat their investigation? Would they change anything?'

Students need to complete the CREST Award checklist included in the teacher's resource pack if they wish to submit their poster for a Bronze award.

Students refer back to the lesson objectives and complete the assessment for learning activity in the orange boxes, feedback and share an interesting fact they have found out from the lesson.

Remind students about using the LifeLab app

Homework

Students decide in their groups which person is responsible for writing each section of their scientific health investigation poster (introduction/method/results/discussion/images etc). They then prepare their section for homework.

Resources

- Your Scientific Health Investigation PowerPoint slides
- Student booklet pages 52-54
- Bronze CREST Award checklist (on teachers memory stick)
- Electronic or hardcopy of poster template

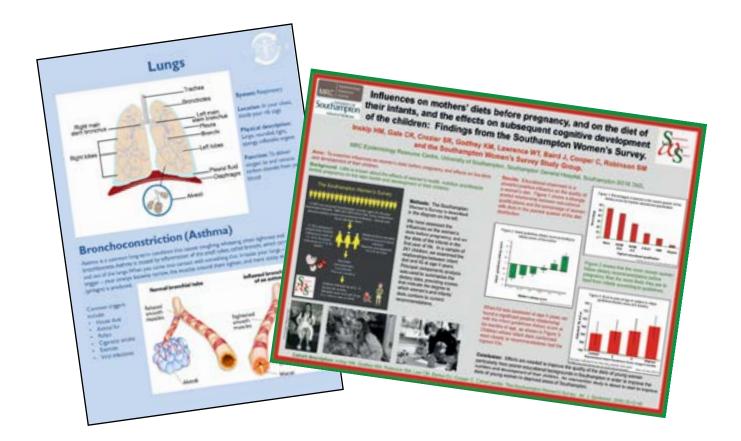
Keywords

- hypothesis
- evidence
- precision
- accuracy
- repeatability

Presenting Health Data

Objectives

At the end of this lesson students should be able to:


- Present their results from their investigation as a scientific health investigation poster
- Evaluate their scientific health investigation posters

Hook

Show examples/photos of some science posters. Look around your Science Lab. Can you see any more examples?

Activities:

Introduce the lesson and share the objectives with the students. Individuals record how confident they are for each of the objectives at the start of the lesson.

Starter

Science posters vs Scientific investigation posters

Discuss what is the difference between a science poster and a science investigation poster.

Brainstorm: 'What is a science poster? What does it look like? What is its purpose? What is the audience? Why would scientists choose to present their findings like this?'

Show students some examples of 'scientific investigation posters' - some from scientists and some from LifeLab students who have produced scientific investigation posters.

The idea isn't that the students will be able to understand the scientific investigation posters, but more that they can discuss how the data, graphs, method and findings are presented along with references.

Presenting Health Data

Main

Activity I: Design your own Scientific Health Investigation Poster

Time: variable, teacher's discretion

Using the poster templates given in PowerPoint or the printed versions, the students, in groups, produce their own scientific investigation poster.

The key points the students need to think about are: audience, presentation of actual data, how to make a poster look interesting (not too much text, more images, but relevant images), authors, addresses, logos, acknowledgements, references, the structure of the poster with aim/hypothesis/method/results/conclusion etc.

Each member of the group could write a different section (possible homework from previous lesson). Perhaps include any images/results of the LifeLab activities if appropriate.

The PowerPoint templates given can be modified in any way the students want eg. Colour/background/layout etc.

NB there is a good opportunity here to link to English and Maths with numeracy and literacy skills being used for data analysis and write up/presentation.

Presenting Health Data

Plenary

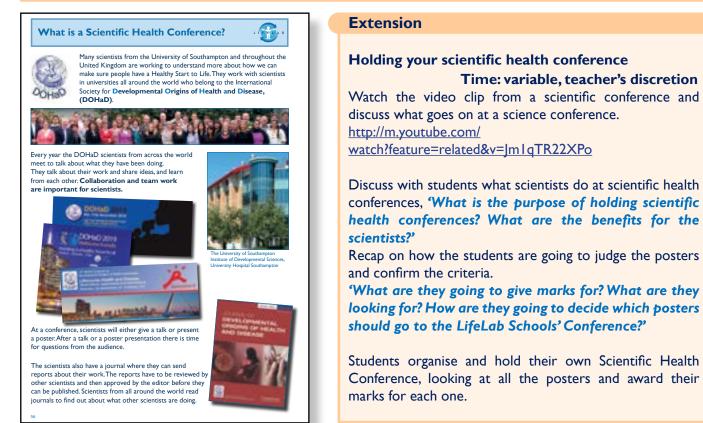
Activity 2: Judging your Scientific Health Investigation Posters

/ 🗎

Time: variable

Students need to think about a list of points/criteria to consider using when judging the posters. Discuss how the students are going to judge the posters, agree the criteria.

'What are they going to give marks for? What are they looking for? How are they going to decide which poster should go to the LifeLab Schools' Conference/Showcase?'


This could lead into an extension lesson, where the students can have a mini conference and then decide which posters are the "best" and should be presented at the LifeLab schools' conference/showcase.

Students refer back to the lesson objectives and complete the assessment for learning activity in the orange boxes, feedback and share an interesting fact they have found out from the lesson.

N.B. Teachers need to arrange printing of the posters; they are best printed out on A3.

For those selected to submit for a Bronze CREST award you will need to send the teacher's checklist per poster and an electronic copy of the student poster as evidence to LifeLab. LifeLab will invoice you for the CREST certificates that are awarded per student. The three posters sent for the showcase will be paid for by LifeLab.

Remind students about using the LifeLab app

Resources

- Your Scientific Health Investigation PowerPoint slides
- Student booklet pages 55-56
- Examples of scientific health investigation posters
- Computer/IT access for electronic poster template or A1 paper copies of poster template (available from LifeLab on request)

Keywords

- conclusion
- evaluation
- audience
- acknowledgements
- reference
- conference